How simulation models can help to design and update of control strategies

Nicolas Cespedes Cardenas

Department of Population Health and Pathobiology, College of Veterinary Medicine, North

Carolina State University, Raleigh, NC, USA

Lab website:https://machado-lab.github.io

Initial considerations in the model

- Reality
 - Animal population, structure
 - Climate condition
 - Network connections
 - Pathogen
 - Immune / health population status

Initial considerations in the model

- Model factors
 - Data ability
 - Parameters
 - Population stats
 - \circ Assumptions
 - Number of species
 - Animal in the same area
 - Routes transmission
 - Limitations
 - Parameters
 - variability in the pathogen individual, environment

maker and modeler

Model verification: - Real data -Other model

Abstraction of real systems

Conceptualization

Reality

Abstraction of real systems REALISM VS TRANSPARENCY

Source: GAO analysis of peer-reviewed literature and expert interviews. | GAO-20-372

Abstraction of real systems

REALISMVSTRANSPARENCY

Control actions implications:

- How to prevent a spread?
- How to prevent disease introduction/ re introduction?
- How to prevent the spatial transmission?
- When is the best to implement control actions?
 - Evaluate the effectiveness of each action
- How drastic?
 - Variate the level of the control action

- Depopulation
- Movement ban
- \circ Vaccination

Model definition

Why more than one species is really important?

NC STATE UNIVERSITY

Cardenas, N.C., Sykes, A.L., Lopes, F.P.N. et al. Multiple species animal movements: network properties, disease dynamics and the impact of targeted control actions. V https://doi.org/10.1186/s13567-022-01031-2

Why more than one species is really important?

Host 🛱 Bovine 🛱 Small ruminants 🛱 Swine

NC STATE UNIVERSITY

Cardenas, N.C., Sykes, A.L., Lopes, F.P.N. et al. Multiple species animal movements: network properties, disease dynamics and the impact of targeted control actions. V https://doi.org/10.1186/s13567-022-01031-2

Material and methods: Databases

- Livestock movements included the daily between-farm movements of farms containing:
 - Bovine.
 - Swine.
 - Small ruminants.
- Birth and death records.
- Data covering three years.

1,564,487 Movements farm to farm and/or slaughterhouses

19,267,676 Bovine + swine + small ruminant population.

Spoiler alert: No real data

Model definition: infection dynamics

Model definition: infection dynamics

Material and methods: Transmission routes

Spatial transmission 29.3°S 29.4°S 29.5°S-29.6°S 29.7°S 29.8°S-29.9°S 30.0°S-30 km 54.6°W 54.2°W 54.4°W 54.0°W log10(Beta) 1e-10 1e-07 1e-04

Å

- Farm to farm movements
- Farm to slaughterhouses

Material and methods: Model definition

Material and methods: Model definition

Control areas and zones

Depopulation

Vaccination

Vaccination 15,000 Number of vaccinated animals 10,000 variable Total _ Bovine _ Swine _ Small_ruminants _ 5,000 0. 22.5 25.0 27.5 Timestep

Movements standstill

Contact tracing—direct and indirect

Material and methods: Host to host transmission coefficients

Species	Species	Transmission coefficient (β)	References	
Bovine	Bovine	Pert (0.018, 00.24, 0.056)	Calculate from the FMD outbreaks 2000-2001 in the state of Rio Grande do Sul (da Costa et al., 2022).	
Bovine	Swine	Pert (0.018, 0.024, 0.056) Assumed.		
Bovine	Small ruminants	Triangular (0.020, 0.026, 0.031)	(Cabezas et al., 2021; Chis Ster et al., 2012)	
Swine	Bovine	Pert (0.014, 0.044, 0.033) (van Roermund et al., 2010)		
Swine	Swine	Pert (0.044, 0.14, 0.33)	(Kinsley et al., 2018; van Roermund et al., 2010)	
Swine	Small ruminants	Pert (0.014, 0.044, 0.033)	ert (0.014, 0.044, 0.033) (van Roermund et al., 2010)	
Small ruminants	Bovine	Pert (0.012, 0.031 0.065) (Bravo de Rueda et al., 2014)		
Small ruminants	Swine	Pert (0.006, 0.024, 0.09)	(Goris et al., 2009)	
Small ruminants	Small ruminants	Pert (0.018, 00.24, 0.056)	Assumed	

Material and methods: The distribution of each host latent and infectious period

FMD parameters	Species	Distribution parameters	Reference
Latent period	Bovine	Weibull (a = 1.78, b = 3.97)	(Mardones et al., 2010)
	Swine	Log logistic (shape = 7.60; scale = 1.06)	(Moreno-Torres et al., 2022)
	Small ruminants	Pert (m = 3.96, a = 0, b = 13.98)	(Mardones et al., 2010)
Infectious period	Bovine	Gamma (a = 3.97, b = 1.11)	(Mardones et al., 2010)
	Swine	Weibull (shape = 7.16; scale = 11.04)	(Moreno-Torres et al., 2022)
	Small ruminants	Pearson 5 (a = 6.19, b = 17.19)	(Mardones et al., 2010)

Gustavo Machado - gmachad@ncsu.edu

Department of Population Health and Pathobiology, College of Veterinary Medicine, North

Carolina State University, Raleigh, NC, USA

Lab website:https://machado-lab.github.io

